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Why Sample Size is so important?

In census the sample size is the whole population!

It says when you should do your stats

It gives an idea of the actual resources we should put into a project

It tells us when the numerosity of our sample is actually representative of
the statistical population

·

·

·
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What is a sample size?

Generally speaking, the larger the sample size, the more accurate are your
estimates and your statistics.

However we have a lot of limitations: availability of participants, time contraints,
money constraints, etc…

Therefore the optimum sample size is the minimum number of participants
needed to have statistically representative data.
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Power of a statistical test

In frequentist statistics (NHST), some fundamental concepts are:

The power of a statistical test is given by .

It is the probability to reject the null hypothesis when it is false.

Generally, accepted values of power are: 80%, 90%, 95% and 99%, which means
.

The sample size is the number of observations required, to obtain a
statistically significant result in the power% of cases, given a specific effect
size.

first type error ( ) – typically set at 5% (0.05) (False Positives)

second type error ( ) (False Negatives)

· α

· β

1 − β

β = 20%, 10%, 5%, 1%
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Effect size of a statistical test

First introduced by Cohen 1988, they demonstrated their importance in short
time.

The effect size of a test is a (usually) standardized measure of the dimension of
an effect (difference between groups, covariation, etc…) that should always been
presented altogether with a (significant) p-value.

If the p-value says that there is an effect, the effect size says us if the effect is
worth to be mentioned.

The effect size is an indication of how much of the control observation is lower
(or higher) than the experimental observations.
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Effect size and % of difference

Let's use the Cohen's  z-score.

Nominal size Effect size % control < experimental observations

0.0 50%

Small 0.2 58%

Medium 0.5 69%

Large 0.8 79%

1.4 92%

https://rpsychologist.com/d3/cohend/  interesting visualization

d = ←−μ̂1 μ̂2

σ̂12

←
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Sample Size  1/3

The sample size is computed as a function of the (desired) power ( ) and
effect size ( ).

It is the optimum sample size needed to have the desired power, specifying a
certain effect size.

Taking for example the case of a single sample and one-tail t-test, with the
Cohen's  as effect size, it solves for  the following system:

n = f(1 − β,ES)

1 − β
ES

d n

⎧
⎩⎨
⎪⎪⎪
⎪⎪⎪

P (q, ν, c) = 1 − βrt
ν = (n− 1)
q = (α, ν)Qt

c = × dn−−√
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Sample Size  2/3

 these are the degrees of freedom of the Student's t distribution

 this is the quantile of the t distribution at  (usually 0.05) with
these d.o.f.

 is the non-centrality parameter of the t distribution. Larger the
sample, more deviated is the distribution.

 is the integrate of the curve of the t distribution stopped at quantile
.

n = f(1 − β,ES)

ν = n− 1

q = (α, ν)Qt α

c = × dn−−√

P (q, ν, c)rt
q
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Sample Size  3/3

EXAMPLE

; ; 

n = f(1 − β,ES)

d = 0.3 1 − β = 0.8 α = 0.05

n = 70

ν = 69

q = (α, ν) = (0.05, 69) ≃ 1.67Qt Qt

c = × d = × 0.3 ≃ 8.31 × 0.3 ≃ 2.49n−−√ 69−−√

P (q, ν, c) = P (1.67, 69, 2.49) = 0.7932814rt rt
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Sample Size  *n = f(1 − β,ES)

Values are mirrored.·
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A question for you:

Recalling that: the sample size is the number of observations required, to obtain a
statistically significant result in the power% of cases, given a specific effect size.

Do you think that if I reach a statistically significant result with less observations
than those required by the sample size, it is OK?

Why?
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My answer

No, it is not OK.

The motivation is that the sample size if the minimum number of observations
(subjects) required to have a representative sample of the statistical population.

Smaller samples can be more prone to (less obvious) outliers, therefore there is
not only the risk to have a greater second type error, but also a first type error.
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How we can compute a sample size?

Here I present three main ways:

When we compute the sample size, we need to think to our hypotheses and to
the specific contrasts of interest.

We also need to think to the possible effect size.

How to determine it?

By means of the functions first proposed by Cohen (1988)

By means of the functions proposed by Chow SC, Shao J, Wang H. (2008)

By means of simulations

·

·

·

pilot data

data in literature

standard tables

·

·

·

15/77



The pwr package



How we can compute a sample size with Cohen's
formulas?

In order to use the Cohen's formular, there is the package pwr in R.

In this package there are several functions that allow us to compute the sample
size in different cases.
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Cohen's formulae in R 1/2

function power calculations for ES standard values

pwr.2p.test two proportions (equal n) h - S: 0.2; M: 0.5; L: 0.8

pwr.2p2n.test two proportions (unequal n) h - S: 0.2; M: 0.5; L: 0.8

pwr.anova.test balanced one way ANOVA f - S: 0.1; M: 0.25; L: 0.4

pwr.chisq.test chi-square test w - S: 0.1; M: 0.3; L: 0.5

pwr.f2.test general linear model f2 - S: 0.02; M: 0.15; L: 0.35

18/77



Cohen's formulae in R 2/2

function power calculations for ES standard values

pwr.p.test proportion (one sample) h - S: 0.2; M: 0.5; L: 0.8

pwr.r.test correlation r - S: 0.1; M: 0.3; L: 0.5

pwr.t.test t-tests (one sample, 2 sample, paired) d - S: 0.2; M: 0.5; L: 0.8

pwr.t2n.test t-test (two samples with unequal n) d - S: 0.2; M: 0.5; L: 0.8

with the function cohen.ES you can have all the standard effect sizes.
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Structure of the functions in the pwr package

More or less, all the pwr.?.test have the same parameter to be specified:

power: a value within 0 and 1, stating the desired power

sig.level: the . If you do not specify it, by default is = 0.05

alternative: "two.sided", "greater", "less"

(different for each function): the effect size

(only in some function) type: "two.sample" (comparing two independent
groups), "one.sample" (one group against ), "paired" (comparing the same
group in two different times)

·

· α

·

·

·
μ
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Using the pwr package

Let's compute the sample size previously seen

library(pwr)

pwr.t.test(d = 0.3, power = 0.8, sig.level = 0.05,
           type = "one.sample", alternative = "greater")

## 
##      One-sample t test power calculation 
## 
##               n = 70.06791
##               d = 0.3
##       sig.level = 0.05
##           power = 0.8
##     alternative = greater
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pwr::pwr.t.test 1/3

The parameters are:

d: the effect size

sig.level

power

type: "two.sample", "one.sample", "paired"

alternative: "two.sided", "less", "greater"

·

·

·

·

·
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pwr::pwr.t.test 2/3

EXAMPLE

We want to train black and white cats in jumping at a command.

If our hypothesis is that black cats will jump more, how many cats we have to
train?

Let's use a power of 80%, and a medium effect size.
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pwr::pwr.t.test 3/3

EXAMPLE

## 
##      Two-sample t test power calculation 
## 
##               n = 50.1508
##               d = 0.5
##       sig.level = 0.05
##           power = 0.8
##     alternative = greater
## 
## NOTE: n is number in *each* group
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pwr::pwr.anova.test 1/3

The function is pwr.anova.test, and it works only with one-way balanced designs.

That means that if we have a multifactorial design, we have to force it as a one-
way design.

The null hypothesis is that in all levels of the factor the means are equal, the
alternative hypothesis is that there are at least two levels that are statistically
different from each other.
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pwr::pwr.anova.test 2/3

EXAMPLE

We have an "Empathy for pain" experiment. In this experiment, we collect
physiological data during the vision of 3 typologies of videos: - Control video, A
video of a Syringe penetrating an hand, A video of a Q-tip touching a hand In two
perspectives: - 1PP, 3PP The colour of the Q-tip or syringe can change: - Blue,
green, pink

Therefore, the design is a . If we translate it as a one.way design, the
total number of "groups" (k) is .

However, our hypothesis is that there is a difference between the Syringe videos
in the 1PP and 3PP, therefore touching two factors: . The total number of
groups to take into account is .

3 × 2 × 3
18

3 × 2
6
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pwr::pwr.anova.test 3/3

EXAMPLE

Let's use a medium effect size f = 0.25

pwr.anova.test(k = 6, f = 0.25, power = 0.8, sig.level = 0.05)

## 
##      Balanced one-way analysis of variance power calculation 
## 
##               k = 6
##               n = 35.14095
##               f = 0.25
##       sig.level = 0.05
##           power = 0.8
## 
## NOTE: n is number in each group
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pwr::pwr.f2.test 1/3

The function is pwr.f2.test.

Formally, it is for multiple regressions, but it does the same things seen in
pwr.anova.test with much more flexibility.

You do not need to force your design into a "one-way" study, and you can take
into account covariates.

The parameter that takes this function are:

u: degrees of freedom for numerator

v: degrees of freedom for denominator

f2: effect size

sig.level

power

·

·

·

·

·
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pwr::pwr.f2.test 2/3

You need to give to the function the number of degrees of freedom for the
numerator. In this way the function will return the number of degrees of
freedom of the demoninator. From this value we can estimate the sample size.

 is equal to the number of levels of the factor/interaction minus 1.  is the
degrees of freedom of the residuals.

The sample size is .

u v

u+ v+ 1
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pwr::pwr.f2.test 3/3

EXAMPLE

At the previous study, we add the evaluation of embodiment on a likert scale of
the hand seen in the videos.

The d.o.f. at the numerator are now: 

Let's use a medium effect size 

2 × 3 × 1 − 1

f2 = 0.15

pwr.f2.test(u = 5, f2 = 0.15, power = 0.8, sig.level = 0.05)

## 
##      Multiple regression power calculation 
## 
##               u = 5
##               v = 85.21369
##              f2 = 0.15
##       sig.level = 0.05
##           power = 0.8
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Exercises A 1/3

1. Compute the required sample size to understand if females are more creative
than males, using a small effect size and a power = 80%.

2. Estimate the sample size necessary to understand if people feel more energic
after a hot shower, with a moderate effect size and a power = 90%.

3. Repeat, with a small effect size and power = 80%.

31/77



Exercises A 2/3

1. We have three groups of people: volleyball players, basketball players and
normal people. Your hypothesis is that normal people are less reactive in a
go-no-go experiment. Find the total number of partecipants required with a
medium effect size and a power of 99%.
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Exercises A 3/3

1. In an experiment concerning memory we have three groups: the coffee
group, the tea group and the water group, and two between-subjects
conditions: sleeping deprivation and normal sleeping. Find the sample size
per group, with a power of 80% and a large effect size.
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The TrialSize package



How we can compute a sample size with Chao et
al.'s formulas?

We can use the TrialSize package.

It has 80 different functions to compute the sample size.

Some of interest are:

ANOVA.Repeat.Measure

CrossOver.ISV.Equality

CrossOver.ISV.NIS

·

·

·
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TrialSize::ANOVA.Repeat.Measure 1/2

; 

This function needs:

No space for standard ES!

Suggestion: in terms of Cohen's d, delta = ES 

: ∀ =H0 μi μ(j:k)≠i : ∃ ≠H1 μi μ(j:k)≠i

alpha

beta: be careful, the power is . If you want power = , beta = 

sigma: the sum of the variance components

delta: the difference that we consider as meaningful

m: the total number of Bonferroni adjustments needed for post-hoc tests

·

· 1 − β 80% 0.2

·

·

·

× sigma
− −−−−√
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TrialSize::ANOVA.Repeat.Measure 2/2

EXAMPLE

We use again the same example seen before.

Our physiological data have been transformed into z-scores, therefore a
meaningful difference may be 1.5

We set the sum of the variances as  = delta÷ ES2
− −−−−−−−−−√ ≃ 2.451.5 ÷ 0.52

− −−−−−−−√

s.size <- ANOVA.Repeat.Measure(alpha = 0.05, beta = 0.2, sigma = 2.45,
                               delta = 1.5, m = 6)
s.size

## [1] 64.6112
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TrialSize::CrossOver.ISV.Equality 1/3

 is the within-subjects variance for treatment T

; 

This function needs:

Suggestion: think sigmas in terms of percentages or z-scores

sigmaT

: ∀ =H0 σT 1

1 σT 2

2 : ∃ ≠H1 σT 1

1 σT 2

2

alpha

beta: be careful, the power is . If you want power = , beta = 

sigma1: within-subject variance of treatment 1

sigma2: within-subject variance of treatment 1

m: for each subject, there are m replicates

·

· 1 − β 80% 0.2

·

·

·
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TrialSize::CrossOver.ISV.Equality 2/3

EXAMPLE

Cross-Over design with treatment and placebo condition, 5 trainings per week,
done for two weeks.

Data are in z-scores

CrossOver.ISV.Equality(alpha = 0.05, beta = 0.2,
                                 sigma1 = 1, sigma2 = 2, m = 10)

## [1] 2.0000000 0.2573179
## [1] 3.0000000 0.3880039
## [1] 4.0000000 0.4632526
## [1] 5.0000000 0.5143397
## [1] 6.0000000 0.5521888
## [1] 7.0000000 0.5818003
## [1] 8.0000000 0.6058496
## [1] 9.0000000 0.6259223
## [1] 10.0000000  0.6430289
## [1] 11.0000000  0.6578498
## [1] 12.0000000  0.6708628
## [1] 13.0000000  0.6824154
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TrialSize::CrossOver.ISV.Equality 3/3

EXAMPLE

[1] 30.0000000 0.7823326

[1] 31.0000000 0.7855731

[1] 32.0000000 0.7886677

[1] 33.0000000 0.7916271

[1] 34.0000000 0.7944611

[1] 35.0000000 0.7971784

[1] 36.0000000 0.7997869

[1] 37.0000000 0.8022938  we reached the desired power!←
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TrialSize::CrossOver.ISV.NIS 1/3

NIS stands for Non-Inferiority/Superiority of Intra-Subject Variability in Crossover
Design

; 

This function needs:

Suggestion: think sigmas in terms of percentages or z-scores

ρ = ÷σT 1 σT 2

: ρ ≥ δH0 : ρ < δH1

alpha & beta

sigma1 & sigma2: within-subject variance of treatment 1 and 2

m: for each subject, there are m replicates

margin: margin= , the true ratio of sigma1/sigma2

·

·

·

· δ
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TrialSize::CrossOver.ISV.NIS 2/3

EXAMPLE

Same design seen before. When the experimental treatment will give a better
outcome than placebo? Data are in z-scores.

CrossOver.ISV.NIS(alpha = 0.05, beta = 0.2,
                                 sigma1 = 1, sigma2 = 2, m = 10,
                  margin = 2)

## [1] "ratio" "0.125"
## [1] 2.0000000 0.3012328
## [1] 3.0000000 0.4323352
## [1] 4.0000000 0.5055975
## [1] 5.0000000 0.5546081
## [1] 6.0000000 0.5905835
## [1] 7.0000000 0.6185455
## [1] 8.000000 0.641143
## [1] 9.0000000 0.6599302
## [1] 10.0000000  0.6758903
## [1] 11.0000000  0.6896809
## [1] 12.0000000  0.7017617
## [1] 13.0000000  0.7124655
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TrialSize::CrossOver.ISV.NIS 3/3

EXAMPLE

[1] 24.0000000 0.7829748

[1] 25.0000000 0.7870264

[1] 26.0000000 0.7908511

[1] 27.0000000 0.7944695

[1] 28.0000000 0.7978998

[1] 29.000000 0.801158  we reached the desired power!←

43/77



Exercises B 1/3

1. Estimate the required sample size for a repeated measures anova design,
with a  within-subjects design. You decided that the difference
should be half of the overall variance. The power is 90%.

2. Repeat the same exercie with a  design.

3 × 2 × 3

2 × 2
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Exercises B 2/3

1. We want to apply two different trainings in a cross-over design. Every
treatment is repeated 20 times. We want to know how patients to collect to
understand if the variances of the two treatments are different. Power = 99%,
we expect that the variance of one treatment is 1.5 the variance of the other
treatment.
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Exercises B 3/3

1. Same exercise, this time we want to know how many patients we need to be
sure that one treatment will not have a larger intra-subjects variance than the
other treatment. Every treatment is repeated 20 times. Power = 99%, we
expect that the variance of one treatment is 1.5 the variance of the other
treatment. We expect that the true ratio between the two variances is 1.
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Simulations



What is a simulation?

"By data simulation, we simply mean the generation of random numbers from a
stochastic process that is described by a series of distributional statements, such
as " (Kéry and Royle, 2016)

In R, this simple simulation can be done as follows:

Larger the simulation, more similar to the distribution are the data.

∼ Normal(μ, )αi σ2α

rnorm(n = 5, mean = 2, sd = 1)

## [1] 1.556414 2.504723 2.736112 3.511451 1.625105
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Simulation over a gaussian distribution

1000 random samplings with mean 0 and standard deviation 1.
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Why using statistical simulation to compute
sample size?

For complex models, it is difficult to provide a good estimate of power without
the use of simulation.

Simulations repeatedly generate random data (at least 1000 times) based on
one’s predefined model, then analyze each data set and count the proportion of
results that are significant.

That proportion is the estimated power for the model.

We increase the number of "observations" until we reach the desired power.
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A simple example 1/3

Let's use simulation to determine the sample size for a t-test, with effect size
Cohen's d = 0.8 and power = 80%.

If we use the analytical functions:

pwr.t.test( d = 0.8 , power = 0.8 )

## 
##      Two-sample t test power calculation 
## 
##               n = 25.52458
##               d = 0.8
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group

51/77



A simple example 2/3

d = ( − ) ÷ → 0.8 = ( − 0) ÷ →μ1 μ2 σ212 μ1 σ212
0.8 = ( − 0) ÷ 1 → = 0.8μ1 μ1

out <- rep(NA , times = 10000)
for ( i in 1:10000){
  y1 <- rnorm( 25 , mean = 0.8 )
  y2 <- rnorm( 25 )
  out[i] <- t.test( y1 , y2 )$p.value
}
paste( "The power for 25 participants is:" , mean( out < 0.05 ))

## [1] "The power for 25 participants is: 0.7867"
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A simple example 3/3

out <- matrix(NA , nrow = 1000 , ncol = 10)
n <- c(10 , 15 , 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55) # seq( from = 10 , to = 55 , by = 5 )
colnames( out ) <- n
i_column <- 1 # index variable
repeat{
for ( i in 1:1000){

    y1 <- rnorm( n[ i_column ] , mean = 0.8 )
    y2 <- rnorm( n[ i_column ] )
    out[ i , i_column ] <- t.test( y1 , y2 )$p.value
}
if( mean( out[ , i_column] < 0.05) >= 0.8) break;

  i_column <- i_column + 1
}

apply(out[ , 1:i_column]<0.05 , 2 , mean)

##    10    15    20    25 
## 0.392 0.565 0.691 0.803
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Simulation of an ANOVA 1/3

, a  designy ∼ Intercept+ condition× perspective 3 × 2

## we choose our effects of the IV on the DV
intercept <- 0
condition <- c( 0 , 0 )
perspect  <- 0
cond_per  <- c( 0 , 0.8 )

n_subj    <- 30
## we create our dataframe with the IV
data.tmp  <- as.data.frame(
  expand.grid( ID = 1:n_subj,
               conditions = factor(1:3),
               perspective = factor(1:2) )
)
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Simulation of an ANOVA 2/3

mm <- model.matrix(~conditions*perspective,data=data.tmp)
## we start computing our DV
data.tmp$y <- intercept + mm[,2] * condition[1] +
                          mm[,3] * condition[2] +
                          mm[,4] * perspect[1] +
                          mm[,5] * cond_per[1] +
                          mm[,6] * cond_per[2]
## this is a shorter way that is doing the same thing
data.tmp$y <- rowSums( model.matrix( ~ conditions * perspective ,
                                     data = data.tmp ) %*%
              c( intercept , condition , perspect ,cond_per ) )
## we add some stocastic noise to the DV
data.tmp$y <- data.tmp$y + rnorm( nrow( data.tmp ) )

data.tmp

##     ID conditions perspective           y
## 1    1          1           1  0.76161471
## 2    2          1           1 -1.18688823
## 3    3          1           1  2.48858967
## 4    4          1           1 -0.52312161
## 5    5          1           1  0.37514819
## 6    6          1           1 -0.04020194
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Simulation of an ANOVA 3/3

summary( aov( y ~ conditions*perspective +
                Error(ID/conditions*perspective) , data= data.tmp) )

## 
## Error: ID
##           Df   Sum Sq  Mean Sq F value Pr(>F)
## Residuals  1 0.001572 0.001572               
## 
## Error: perspective
##             Df Sum Sq Mean Sq
## perspective  1  8.392   8.392
## 
## Error: ID:conditions
##            Df Sum Sq Mean Sq
## conditions  2  3.081    1.54
## 
## Error: ID:perspective
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals  1    4.6     4.6               
## 
## Error: ID:conditions:perspective
##                        Df Sum Sq Mean Sq
## conditions:perspective  2   63.2    31.6
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Computing the power of an ANOVA 1/3

out <- matrix(NA , nrow = 1000 , ncol = 39)
n <- seq(from = 10, to = 200, by=5)
colnames(out) <- n
i_column <- 1 # index variable

## we choose our effects of the IV on the DV
intercept <- 0
condition <- c( 0 , 0 )
perspect  <- 0
cond_per  <- c( 0 , 0.8 )
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Computing the power of an ANOVA 2/3

repeat{
for(i in 1:1000){

    data.tmp  <- as.data.frame(
       expand.grid( ID = 1:n[ i_column] ,
               conditions = factor(1:3),
               perspective = factor(1:2) )

)
    data.tmp$y <- rowSums( model.matrix( ~ conditions * perspective ,
                                     data = data.tmp ) %*%
              c( intercept , condition , perspect , cond_per ) ) +
      rnorm( nrow(data.tmp) )
    out[ i , i_column ] <- summary( aov( y ~ conditions*perspective +
                Error(ID/conditions*perspective) ,
                data= data.tmp) )$`Error: Within`[[1]][2,5]
    
}
if( mean( out[ , i_column] < 0.05 ) >= 0.9 ) break;

  i_column <- i_column + 1
}
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Computing the power of an ANOVA 3/3

apply(out[ , 1:i_column]<0.05 , 2 , mean)

##    10    15    20    25 
## 0.524 0.718 0.883 0.933
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Define the coefficient to check 1/9

One typical problem is: "how do I know in which coefficient I have to put my
effect size?"

That depends on your hypothesis.

Is your main hypothesis involving the hierarchically higher interaction, or a lower
order coefficient?

Among all coefficients, you should think to which contrast if relly important for
your sample size.
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Define the coefficient to check 2/9

For example, if you have a control and an experimental group, and your
hypothesis is that there will be a difference between the two groups in condition
A compared to a baseline, you should use the coefficient that represents that
interaction.
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Define the coefficient to check 3/9

In this case we should have:

For both factors we can use the treatment coding for the contrast matrix.

In this matrix all coefficients are the differences with a "baseline" level.

Group factor: levels Experimental, Control

Condition factor: levels baseline, A, B, …?

·

·
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Define the coefficient to check 4/9

Thus, in the moment we simulate our data set we should declare these aspects

    data.tmp  <- as.data.frame(
       expand.grid( ID = 1:n[ i_column] ,
               conditions = factor(c("baseline","A","B")),
               group      = factor(c("experimental","control")) )

)

63/77



Define the coefficient to check 5/9

We check the contrasts matrices

    contrasts( data.tmp$conditions )

##          [,1] [,2]
## A           1    0
## B           0    1
## baseline   -1   -1

    contrasts( data.tmp$group )

##              [,1]
## control         1
## experimental   -1
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Define the coefficient to check 6/9

We change the contrasts

    contrasts( data.tmp$conditions ) <- contr.treatment( n = 3 , base = 3 )
    contrasts( data.tmp$group ) <- contr.treatment( n = 2 , base = 1 )
    
    contrasts( data.tmp$conditions )

##          1 2
## A        1 0
## B        0 1
## baseline 0 0

    contrasts( data.tmp$group )

##              2
## control      0
## experimental 1
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Define the coefficient to check 7/9

The coefficients for interactions are simply given by the multiplication of the
contrasts matrices of the main (and lower-order interactions) involved in the
interaction of interest.

A simple way to understand which is this coefficient is just give a look to the
contrast matrix of the whole design.

model.matrix( ~ conditions * group ,
              data = data.tmp )

##     (Intercept) conditions1 conditions2 group2 conditions1:group2
## 1             1           0           0      1                  0
## 2             1           0           0      1                  0
## 3             1           0           0      1                  0
## 4             1           0           0      1                  0
## 5             1           0           0      1                  0
## 6             1           0           0      1                  0
## 7             1           0           0      1                  0
## 8             1           0           0      1                  0
## 9             1           0           0      1                  0
## 10            1           0           0      1                  0
## 11            1           0           0      1                  0
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Define the coefficient to check 8/9

Question: Which coefficients we should use?

(Intercept) is the first one, and it is always = 1

condition1 is the second one, and it is A - baseline

condition2 is the third one, and it is B - baseline

group2 is control - experimental

conditions1:group2 is the "A - baseline" difference for the control group,
minus the same difference but for the experimental group

conditions2:group2 is the "B - baseline" difference for the control group,
minus the same difference but for the experimental group

·

·

·

·

·

·
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Define the coefficient to check 9/9

Therefore, when we create our coefficients, we should put the required effect
size in that coefficient:

## we choose our effects of the IV on the DV

intercept <- 0

condition <- c( 0 , 0 )

group      <- 0

cond_grou  <- c( 0.8 , 0 ) ## <- this should change as follows:
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Infinite interactions and maximum sample size
constraints 1/3

The repeat loop, without the break instruction, can go forever.

Until now we put the break only if we reach the desired power.

But what if we never reach the desired power?

And what if we have constraints in collecting samples from a particular
population?

We just need to put an additional condition in the if ... break; part of the
code.
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Infinite interactions and maximum sample size
constraints 2/3

We need to write "if the sample size is greater or equal than X, then break the
loop"

repeat{
for(i in 1:1000){
...

}
if( mean( out[ , i_column] < 0.05) >= 0.9 ) break;
if( n[ i_column ] >= 40 ) break; ## sample size contraint

  i_column <- i_column + 1
}
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Infinite interactions and maximum sample size
constraints 3/3

Better written:

repeat{
for(i in 1:1000){
...

}
## if we reach the power or...
if( ( mean( out[ , i_column] < 0.05) >= 0.9 ) ||
## we reach the sample size constraint...

( n[ i_column ] >= 40 ) )                    
break;

  i_column <- i_column + 1
}
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Furthermore…

With this methodology, you can compute the power of whatsoever study design.

You can apply this to multilevel models, bayesian statistics, and so on…
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Exercises C 1/4

At the following example change the power at 90%.

out <- matrix(NA , nrow = 1000 , ncol = 10)
n <- c(10 , 15 , 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55)
colnames( out ) <- n
i_column <- 1 # index variable
repeat{
for ( i in 1:1000){

    y1 <- rnorm( n[ i_column ] , mean = 0.8 )
    y2 <- rnorm( n[ i_column ] )
    out[ i , i_column ] <- t.test( y1 , y2 )$p.value
}
if( mean( out[ , i_column] < 0.05) >= 0.8) break;

  i_column <- i_column + 1
}

apply(out[ , 1:i_column]<0.05 , 2 , mean)
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Exercises C 2/4

Change the effect size from 0.8 to 0.5:

out <- matrix(NA , nrow = 1000 , ncol = 10)
n <- c(10 , 15 , 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55)
colnames( out ) <- n
i_column <- 1 # index variable
repeat{
for ( i in 1:1000){

    y1 <- rnorm( n[ i_column ] , mean = 0.8 )
    y2 <- rnorm( n[ i_column ] )
    out[ i , i_column ] <- t.test( y1 , y2 )$p.value
}
if( mean( out[ , i_column] < 0.05) >= 0.8) break;

  i_column <- i_column + 1
}

apply(out[ , 1:i_column]<0.05 , 2 , mean)
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Exercises C 3/4

Add at the following example a break at a sample size of 55:

out <- matrix(NA , nrow = 1000 , ncol = 10)
n <- c(10 , 15 , 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55)
colnames( out ) <- n
i_column <- 1 # index variable
repeat{
for ( i in 1:1000){

    y1 <- rnorm( n[ i_column ] , mean = 0.2 )
    y2 <- rnorm( n[ i_column ] )
    out[ i , i_column ] <- t.test( y1 , y2 )$p.value
}
if( mean( out[ , i_column] < 0.05) >= 0.8) break;

  i_column <- i_column + 1
}

apply(out[ , 1:i_column]<0.05 , 2 , mean)
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Exercises C 4/4

Increase the number of subjects by steps of 1, instead of steps of 5.

out <- matrix(NA , nrow = 1000 , ncol = 10)
n <- c(10 , 15 , 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55)
colnames( out ) <- n
i_column <- 1 # index variable
repeat{
for ( i in 1:1000){

    y1 <- rnorm( n[ i_column ] , mean = 0.8 )
    y2 <- rnorm( n[ i_column ] )
    out[ i , i_column ] <- t.test( y1 , y2 )$p.value
}
if( mean( out[ , i_column] < 0.05) >= 0.8) break;

  i_column <- i_column + 1
}

apply(out[ , 1:i_column]<0.05 , 2 , mean)
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Thank you for your attention!
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